If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-1722=0
a = 1; b = 1; c = -1722;
Δ = b2-4ac
Δ = 12-4·1·(-1722)
Δ = 6889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6889}=83$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-83}{2*1}=\frac{-84}{2} =-42 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+83}{2*1}=\frac{82}{2} =41 $
| 6x-20=x-10 | | 3c+10=31 | | X-10=6x-20 | | 6x-10+x-10=180 | | 4y=193/27 | | 2y+(8y-3)=0 | | 2(4+x)=15-6x | | 646,449/68.3=e | | 18x-18=32x-88 | | s-15=15.31 | | 4m=8m-5 | | X+0.27x=180 | | 2(1+x)=14-5x | | 3/4x+6=2/3x-8 | | 3-7x+1=10 | | 800=2x=60 | | 3x/2+1/4(x-20=10 | | 3b/4-2/3=2/6+5b/2 | | 2y+(8y-3)=1 | | h+16=38 | | 14=h/7=5 | | 10a-3a=28 | | 7(c+7)–3=2c–3 | | 6=v/9 | | 5375=p+0.075p | | 2(5x+1)=-2(4x-3)+3x | | 27x=193.X= | | 3x-15-5-23=90 | | q-11=30 | | 7n-20=3n | | 35-22x=x2+70 | | -6c=-54 |